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Overview 
The following report illustrates the methods we used to create an autonomous robot 

capable of driving around a track, obeying traffic laws, and reading license plates. Our strategy 
utilizes classic computer vision techniques as well as aspects of machine learning in the form of 
a convolutional neural network. To give a high level overview of our system, our robot uses PID 
line following for driving, computer vision for detecting pedestrians and extracting licence plates, 
and a convolutional neural network for determining the characters of each license plate. 
Throughout the entire process our main algorithm subscribes from and publishes to several 
ROS topics while our robot performs in a Gazebo simulation. 

 
To score full points on the competition, our robot was required to drive around the outer 

ring and inner ring, log all the cars and not lose any points from collisions. To balance the risk 
that came from losing points due to collisions in the inner ring with scoring as many points as 
possible, and to increase the speed of our run, our strategy was to only traverse one lap of the 
outer ring, logging all 6 cars there, and then to end our run. 

Software Architecture 
 
We used three repositories to structure this project: ENPH353/2020T1_competition, 
enph353-controller and ENPH353-License-Plate-CNN, all of which were located in the 
~/ros_ws/src/ directory. 
 
The first repository, ENPH353/2020T1_competition, is the pre-made competition repository that 
contains the robot configuration files as well as the main world to be run in Gazebo. We did not 
edit this repository at all. 
 
The second repository, enph353-controller, is where we stored the bulk of our logic and control 
algorithms. This repository has four files in its ./src/ directory: driver.py, main_control.py, 
plate_detector.py and ImageCapturer.py. The driver file contains our code for PID line following, 
and pedestrian detection. Next, the plate detector file contains our methods for detecting and 
extracting license plates from the simulation. Also, the image capturer file contains code to 
capture and save images from simulation which we used to help write our code, but is not called 
on in competition. Finally, the main control file is a ros node where all of our robot’s main logic 
happens. This is where the robot creates subscribers and publishers, and where we decide 
what actions to take based on input from the simulation camera. The main control file 
communicates and utilizes all of the other files in this repository to accomplish the robot’s 
functions such as driving, pedestrian detection, finding license plates, etc. This repository also 
contains the trained finalized convolutional neural network model. 
 
Lastly, the ENPH353-License-Plate-CNN repository is where we store the data, data generation 
scripts, and training scripts that all contribute to our convolutional neural network model. We 
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have several folders dedicated to holding training data, augmented training data, simulation 
data, and processed simulation data. We also have a few folders that were used to experiment 
with CNN’s involving only letter prediction or only number prediction. Finally, a copy of the 
model gets saved in this repository when we run the model_train.py script. 
 

Robot Control and Movement 

Driving 
We decided early on in the development process that we were going to use a PID line 

following approach to control our robots movement around the course. We created an initial line 
following design that we used in time trials, which we eventually modified and further developed 
into our final design. Our run starts off with a hard-coded turn to orient the robot onto the track, 
and then the PID algorithm begins.  
 

The first approach we used for the PID involved tracking the inner side of the rightmost 
white line marking the right side of the lane. We used the distance from the center of the camera 
frame (which signified the center of the robot) to the right white line as our measure of how 
close or how far we were from the center of the lane. We did this by having a ‘target’ value of 
how far the center of the frame should be from the right white line, and adjusting the angular 
and linear velocity depending on if the value we were reading was greater than or less than this 
target value.  

 
On top of this basic PID structure, we also developed a method of remembering what the 

last velocity command was (straight, left, right) and using that when determining the new cmd 
velocities to use. For example, if the robot’s last command was “straight” and the current 
command is “straight”, keep going at the same speed. On the other hand, if the last command 
was “straight” and the current command is “left”, rather than sending a zero linear velocity and a 
high angular velocity, we send a small linear and angular velocity. This was implemented to help 
correct the robot’s choppy movement, where it would almost tip over if sent a command to 
abruptly change the velocity.  

 
This first approach at the PID worked reliably and had no problems going around 

corners, although it was a little bit slow and lacked sophistication of proportional velocity 
changes. However, once we started trying to combine licence plate detection with our PID, we 
began noticing strange driving behaviours, where the robot would go off course unexpectedly. 
We still don’t understand actually why this occurred, but we believe it could be due to the fact 
that all the image transformations, convolutions, and calculations used in the process of looking 
for license plates were taking a non negligible amount of real world time to complete, and this 
meant that we were skipping on frames being received from the image feed (because we 
couldn’t keep up with them). Whatever the cause of the issue was, we knew it had to be solved, 
and since there were better ways to implement our PID algorithm, we decided to rewrite it. 



 
The logic of how our PID was being called was kept the same, but instead of using the 

last command and pre-set velocity values, we decided to switch over to using a more classical 
PID lane following algorithm with a proportional and derivative gain constant. We used the same 
target value as before, judging our error off of how far the center of our robot was from the right 
white line against the target value. We used this to determine our angular velocity, and then 
subtracted a proportional amount off of the linear velocity as well. After tuning the parameters 
we were able to produce a fairly smooth PID line following algorithm, which had a feature where 
the robot could even move backwards to overcorrect the error. The PID worked very reliably for 
the straight sections of the outer ring; however, it had difficulties when it came to the corners, as 
we will further discuss below. 

 
We initially attempted to implement a PID that could be used around the entire outer 

ring, but with the algorithm we were using, we had a lot of difficulty in adjusting the parameters 
to work perfectly for the straight sections, as well as the corners. To deal with this, we decided 
to instead tune the traditional closed loop PID to guide our robot on the straight sections, and to 
write a hard coded corner handling function to transition our robot from straight section to 
straight section. 

 
As our robot moved around the track, it would monitor whether there were grey pixels in 

the bottom left corner (indicating the road turning off to the left), and also if there were green 
pixels directly ahead (indicating that the road was ending). If both these conditions were met, we 
would enter the turning block of code. The robot would then turn at a fixed angular velocity until 
it saw the turn was ending (indicated by being able to see the edge of the track on the left 
again), in the process, aligning itself with the next section of the track. Next, it would drive 
straight to move it onto the following portion of the track, and lastly, we would exit the block of 
code and begin to use the PID again. 

 
Chained together, all this software allowed our robot to reliably start by turning itself onto 

the track, PID control it’s way along straight stretches of the road and take turns. This meant it 
could navigate around the full outer ring to make it back to where it started, seeing six of the 
cars, and earning points for completing one lap. 
 

Pedestrian Detection 
Our pedestrian detection strategy can be broken up into two parts: crosswalk detection 

and pedestrian crossing. Our robot would detect if it was at a crosswalk, and then do the 
appropriate actions required to detect when it was safe to go through the crosswalk.  

 
For detecting whether the robot was approaching the crosswalk or not, we used the red 

rectangle that comes before the crosswalk as our signal. Our first approach towards detecting 
this red line was to simply look at the red channel of the pixels for a certain height range in the 
frame, and if this value crossed a certain threshold it meant we were at the correct spot to stop 
the robot, and if not the robot would continue to PID line follow. This method for the most part 



worked pretty well; however, there was the rare occasion when the robot would not detect the 
red line and drive through the crosswalk. Since this could possibly lead to a large deduction in 
points, we decided to improve our method for detecting the crosswalk. 

 
Our new strategy for detecting the start of the crosswalk still involved using the red-line 

as a marker, but this time utilized an HSV mask. For each frame received, we would convert it 
into HSV space, apply a mask to pick out the red of the crosswalk as well as apply some 
dilations and other transformations and then contour the shapes picked out by the mask. If there 
was no red detected, we know right away we are not at a crosswalk. If there were contours, we 
would take the one with the largest area and apply an openCV function to find its bounding 
rectangle. We would then use the y-value of this rectangle (corresponding to the left upper 
corner of the rectangle) to determine if the red line was above a certain threshold height in the 
frame. If it was, this indicated that we were at the crosswalk, and we would stop the robot in 
preparation for the next part of the algorithm. 

 
Once the robot had stopped at the crosswalk, it was time for pedestrian detection. Our 

main method of detecting when the pedestrian had crossed was by using openCV background 
subtraction. The high level overview of how we accomplished this is as follows: stop the robot at 
the crosswalk and wait for one second to ensure we get a good background image. Then send 
that image (cropped to the area of focus which is the middle of the crosswalk) to the global 
subtractor object which is of the type: cv2.bgsegm.createBackgroundSubtractorMOG().  
This will allow the subtractor object to use this image as a ‘background’ template. After obtaining 
the background template, we can loop through each new camera frame we receive and use the 
subtractor to apply a mask to the image where white pixels represent changes from the 
template image. If there were enough white pixels in the image, we know a pedestrian must 
have moved across the frame, and so we knew it was safe to cross. Since the image is cropped 
to the center of the crosswalk, we knew to wait 3 simulation seconds before continuing our PID 
through the crosswalk (this way we would never hit the pedestrian mid-cross). Also note that 
once we had determined the pedestrian had crossed, we had to re-initialize the subtractor 
object so that it would not use all of the previous images as templates for the next crosswalk, 
thus making this method for pedestrian detection re-usable for each crosswalk.  
 
The following image illustrates the process of using background subtraction by showing the 
pedestrian filled with white pixels in contrast with the original image. Here, the white pixels are 
representative of parts of the image that are different from the background image.  

 



Figure 1: Original frame contrasted with frame after background subtraction mask is applied 
 
 

Licence Plate Detection and Reading 

Parked Car Detection 
A key step in registering license plates from parked cars for our agent was being able to 

recover the license plate from the image feed in order to pass them into the neural network we 
developed. We used a two step process to accomplish this.  
 

First, we determined whether there was a parked car nearby and visible in the robot’s 
image feed. If there was indeed a car in the feed, we would then proceed to crop the plate out 
from that image. When we first started the project, we suspected that it might be necessary to 
drive extra close to the car to be able to see the plate, but as we developed our agent further, 
we discovered that it was enough to just drive by the car and capture an image of the plate 
while simply using our PID to keep our robot straight. 

 
As far as determining whether there was indeed a car in the image feed, we used a 

classical computer vision technique. Our first attempt at this problem was to convert the image 
feed to HSV space, then apply a mask to pick out the blue components of the image. We then 
counted the number of blue pixels in the frame, and essentially judged whether there was or 
was not a car in the image based on whether there were enough of these blue pixels. 

 
We encountered two problems with this technique. Firstly, the way we counted blue 

pixels in the code seemed to be a very compute heavy operation. Including the method of 
counting blue pixels had a detrimental impact on our robot’s ability to use the PID to track the 
road. This was solved by switching to a better optimized method using NumPy arrays instead, 
which are much more efficient when it comes to many array operations. Still, we realized that 
counting the blue pixels alone was not sufficient because of the fisheye lens of the robot’s 
camera. 

 
As our agent came around turns, it was possible for it to have two parked cars in it’s 

vision. Since the left car was in the corner of the robot’s vision, it would appear much larger, and 
the blue pixel count would pass the set threshold. In order to get around this, we created an 
additional requirement that there needed to be enough grey pixels in the frame that were the 
same shade as the back of the car in the frame. Thus, if we had enough blue pixels and grey 
pixels together, we knew that there was a car in view for us to begin trying to extract a plate 
from. 

 



 
Figure 2: Image feed seen by the robot as it takes a turn 

Licence Plate Extraction 
Using the procedure described above, we could determine with perfect accuracy 

whether there was a parked car close to our agent. From there, we needed to extract an image 
of the license plate to pass on to our neural network. Our first attempt to do all this involved 
using SIFT. We tried to match a template image of a license plate to the license plate in the 
image. 
 

We pursued this strategy briefly, but were very unsuccessful with it. One of the main 
issues was likely that SIFT was identifying key points from our template such as the unique 
characteristics of the letters in that plate, but the letters in our image feed were not necessarily 
the same, so there were not nearly enough key points to match. Additionally, it came to our 
attention that SIFT is a very compute heavy process, so we abandoned that approach and 
opted to instead use classical computer vision techniques to recover the plate from the image. 
 

To begin, we converted the image to HSV space and applied a mask to highlight grey 
pixels that were the same shade as the back of the car and of the license plate. Finding the 
exact values to use in this mask was a difficult task, but it was very useful to use a Colaboratory 
notebook, and tweak the values by hand while constantly showing the images to the screen.  
 

We developed a mask that highlighted the entire back of the car, but it was impossible to 
trigger the back alone, our mask also picked up shades of grey where the white lines met the 
road, grey from the pedestrian and truck, and grey from the exterior background. We used 
several rounds of image erosion to eliminate this noise in the image, and the result was a new 
binary image with only pixels on the back of the car being triggered. 

 



Figure 3: Masked image of the back of the car after erosion 
 

We found the centroid of this shape to get the x and y coordinates of a pixel somewhere 
on the back of the car. We then looked back at our original image, and applied a blue mask to 
reveal only the blue from the car. Using the centroid we had previously located, we identified the 
left edge of the back of the car by finding the first pixel to the left of the centroid that had been 
triggered by the blue mask. We found the right edge using the same strategy, and located the 
top and bottom of the back of the car by traversing these edges to their ends at the top and 
bottom. This allowed us to crop out the entire back of the car. 
 

Once we had identified the back of the car, finding the plate turned out to be a much 
larger challenge than we anticipated. The main hurdle came from the fact that when we filtered 
in HSV space, varying lighting at different sections of the track caused there to be an 
overlapping range of values that the plate pixels could occupy, and that the non-plate back of 
the car pixels could occupy. This meant that by using a static HSV mask to identify the plates, 
we would either miss the plate or we would pick up on both the plate and the non desired pixels 
from the back of the car. 
 

To reconcile this issue, we used a dynamic mask based on the car we were 
investigating. Regardless of what shade of grey the plate and back of the car were, it was 
always true that the plate was a darker grey (lower hsv value) then the rest of the car, so for 
each image we identified the average HSV value of the pixels near a point at the upper middle 
section of the image, which we took to represent the HSV values for the “non-plate section of 
the back of the car”. Due to how reliable our method was for extracting the back of the car, it 
seemed that this upper mid point procedure always yielded an average that was indeed 
representative of the “non-plate section of the back of the car” and nothing else. 
 

Given the HSV values of the “non-plate section of the back of the car” pixels, we then 
applied a mask to pick out all the grey pixels that were darker than what we found the back of 
the car to be. We combined this with a blue mask which picked out the blue letters on the plate, 
and used several rounds or dilation, erosion and re-dilation to find a band of white in the binary 
image representing where the mask is in the image. 

 
Figure 4: Masked image of the back of the car (left), same image after transformations (right) 

 



Similarly to the strategy described above for isolating the back of the car, we traversed 
this image to find the four corners of this parallelogram. We then applied a perspective 
transform to turn that parallelogram into a perfect rectangle. The result was an image of slightly 
varying dimensions, but that was always a very clear shot of the license plate. 

 
Before sending the images into our convolution neural network, there was some 

preprocessing we had to do. First, we resized the plates to be of size 256 x 60 pixels. Then, we 
cropped each plate into individual letters using pre-set pixel values. Each letter was then turned 
into binary and stored in an appropriate array. Converting the letters to binary took out any 
issues that would have come from different lighting or shades of colours when training and 
predicting using our convolutional neural network. The dataset that stored the letters was then 
normalized and reshaped to match the dimensions of our training data. Lastly, the dataset was 
sent into a predict function, which we will talk more about in the Convolutional Neural Network 
for Reading Plates section below. 

Convolutional Neural Network for Reading Plates 
We used a convolutional neural network to predict characters. We will first discuss the 

data generation, training and model used for our CNN, and then we will explain how we 
incorporated the model into our main algorithm for detecting and reading license plates. 
 

For training data generation, we used the licence plate generator that was provided to us 
in lab 05. With this, we generated a large amount of licence plates which we stored in our 
ENPH353-License-Plate-CNN repository in the data folder. We then zoomed out on the plates 
followed by resizing to 256 x 60 to make the plates look less sharp and more like the data we 
were getting from simulation. Then we cropped the plates into their individual letters and 
performed a number of augmentations on the letters including shifting, blurring, zooming, and 
changing to binary. As previously mentioned, turning the data from RGB to binary helped 
prevent any difficulties to do with lighting, different shades, different colours in the background, 
etc. These augmented letters were saved to the data-2.0 folder along with appropriate image 
naming in order to keep the information we needed for labelling which involved the character 
itself. 
 

The next step was creating a validation set. We accomplished this by saving licence 
plates captured from our robot in simulation and manually labelling the plates (stored in 
simulation-data). These labelled images could then be sent into our script to pre-process them 
before their use in our model. The simulation_data_generation.py script would resize the plate 
images, crop out the letters, turn the letters to binary, and then save them to simulation-2.0.  
 

After we created the necessary training and validation data, we could move into the 
actual script for creating the model. This was done in model_train.py within the same repository. 
The structure of our training script is very similar to that of lab 05. However, rather than 
processing full plates it only has to process individual letters. The script starts off by one-hot 
encoding the training and validation data according to character. Before sending the data into 
the model we normalize it. The actual model itself is a sequential model with two convolution 
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layers and two max pooling layers, followed by a dropout layer, a dense layer of 128 nodes, and 
finally a dense layer of 36 nodes. 
 

For testing the performance of our convolutional neural network, after fitting the model to 
our data we graphed the training and validation losses as functions of number of epochs as well 
as the training and validation accuracies as functions of number of epochs. We also plotted 
confusion matrices to see the specific weaknesses in our model. The graphs helped us visualize 
if our model was overfitting and the overall performance of the model. The confusion matrix 
showed us which letters/numbers the model was most often confusing for one another. 

 
We tried many different combinations of layers for our model, as well as played around 

with how we augmented our training data; however, we were getting quite poor accuracy from 
our model. We decided to try creating separate neural networks for letters vs. numbers, but 
even then the accuracy was still low. After having tested several different models and tried with 
many different data sets, we decided to switch up our approach for training the model. We found 
that the licence plate data we were getting from simulation was actually quite good and 
consistent, and thus we made the decision to collect more data from simulation and use that to 
train our model. Even after a relatively small amount of plates had been collected (in the 200 
range), we tested our model after having trained it with purely simulation data, and the results 
were exponentially better than before. Our accuracy was over 90%, our losses were minimal 
and our confusion matrix almost resembled a perfect diagonal. After some more tuning of layer 
parameters we settled on a model that presented results as in the images below:  

 

 
Figure 5: Model Accuracy and Model Loss Graphs, and Confusion Matrix of final model 

 



Switching over to our main control algorithm, once our model was called to predict the 
characters of a certain licence plate, it would return an array of size 36 for each character with 
values representing the probability of the character belonging to each class. Although the 
accuracy of the CNN was very high when used in simulation, there was the rare occurrence 
where it would mix up a letter and number. To avoid this situation, we added a step after the 
model makes its predictions to separate the prediction array depending on whether the 
character should be a letter or number. The first two characters of the licence plates are always 
letters, and the last two numbers, so we could use that knowledge to splice the prediction array 
and find the highest prediction according to whether it is a number or letter. We then gather and 
publish these predicted values to the license plate topic.  
 

In addition to publishing the license plate number, our robot was required to publish it to 
the correct stall ID number as well. The ID of each car was posted above the license plate so 
we considered using character detection to read that as well, but since our driving control 
involved always navigating the course by traversing the outer ring in a counterclockwise circle, 
our robot saw each parking ID in the same order every time it ran the course. As such, we used 
simple variables and counters to keep track of which cars we already published, and using that 
information, we knew which stall to publish each plate as soon as the plate was available. 

 
 


